Polymer-based chromophore–catalyst assemblies for solar energy conversion
نویسندگان
چکیده
The synthesis of polymer-based assemblies for light harvesting has been motivated by the multi-chromophore antennas that play a role in natural photosynthesis for the potential use in solar conversion technologies. This review describes a general strategy for using polymer-based chromophore-catalyst assemblies for solar-driven water oxidation at a photoanode in a dye-sensitized photoelectrochemical cell (DSPEC). This report begins with a summary of the synthetic methods and fundamental photophysical studies of light harvesting polychormophores in solution which show these materials can transport excited state energy to an acceptor where charge-separation can occur. In addition, studies describing light harvesting polychromophores containing an anchoring moiety (ionic carboxylate) for covalent bounding to wide band gap mesoporous semiconductor surfaces are summarized to understand the photophysical mechanisms of directional energy flow at the interface. Finally, the performance of polychromophore/catalyst assembly-based photoanodes capable of light-driven water splitting to oxygen and hydrogen in a DSPEC are summarized.
منابع مشابه
Electronic and optical properties of polypyridylruthenium derivatized polystyrenes: multi-level computational analysis of metallo-polymeric chromophore assemblies.
Great effort is geared toward investigation of new materials for solar energy conversion in recent years. Polymeric chromophore assemblies consisting of [Ru(bpy)3](2+) complexes attached to a polystyrene backbone have gained considerable interest in recent years because of their structural flexibility combined with their ability to efficiently capture solar energy and transport the captured ene...
متن کاملLight-Driven Water Splitting by a Covalently Linked Ruthenium-Based Chromophore− Catalyst Assembly
The preparation and characterization of new Ru(II) polypyridylbased chromophore−catalyst assemblies, [(4,4′-PO3H2-bpy)2Ru(4-Mebpy-4′-epic)Ru(bda)(pic)] (1, bpy = 2,2′-bipyridine; 4-Mebpy-4′-epic = 4-(4-methylbipyridin-4′-yl-ethyl)-pyridine; bda = 2,2′-bipyridine-6,6′-dicarboxylate; pic = 4-picoline), and [(bpy)2Ru(4-Mebpy-4′-epic)Ru(bda)(pic)] (1′) are described, as is the application of 1 in a...
متن کاملInkjet Printing Meets Electrochemical Energy Conversion.
Inkjet printing is a very powerful digital and mask-less microfabrication technique that has attracted the attention of several research groups working on electrochemical energy conversion concepts. In this short review, an overview is given about recent efforts to employ inkjet printing for the search of new electrocatalyst materials and for the preparation of catalyst layers for polymer elect...
متن کاملRobust Photocatalytic H2O2 Production by Octahedral Cd3(C3N3S3)2 Coordination Polymer under Visible Light
Herein, we reported a octahedral Cd3(C3N3S3)2 coordination polymer as a new noble metal-free photocatalyst for robust photocatalytic H2O2 production from methanol/water solution. The coordination polymer can give an unprecedented H2O2 yield of ca. 110.0 mmol • L(-1) • g(-1) at pH = 2.8 under visible light illumination. The characterization results clearly revealed that the photocatalytic H2O2 p...
متن کاملModeling, Optimization and exergoeconomic analysis a multiple energy production system based on solar Energy, Wind Energy and Ocean Thermal Energy Conversion (OTEC) in the onshore region
In the present study, investigated an energy production system using three types of renewable energy: solar, wind and ocean thermal energy with climatic conditions and close to areas with high potential for the OTEC system, Has a good position in terms of wind speed and solar radiation, used them as energy sources. The proposed system is designed and evaluated based on the total daily electrici...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2017